

Тепловой контроль контактов и контактных соединений электрооборудования и ЛЭП

АКТУАЛЬНОСТЬ

Оценка состояния контактов и контактных соединений является актуальной задачей при эксплуатации электроустановок. Развитие дефекта контакта и контактного соединения могут приводить к:

- возникновению технологических нарушений при эксплуатации электрооборудования;
- повреждению электрооборудования и ЛЭП;
- распространению аварии на соседние ячейки и оборудование;
- возгораниям и пожарам.

Своевременное выявление дефектов контактов и контактных соединений позволяет предотвратить технологические нарушения, возгорания и пожары

ДЕЙСТВУЮЩИЕ ТРЕБОВАНИЯ ПО КОНТРОЛЮ СОСТОЯНИЯ КОНТАКТОВ И КОНТАКТНЫХ СОЕДИНЕНИЙ

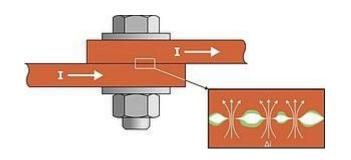
- РД 34.45-51.300-97 «Объём и нормы испытаний электрооборудования»
- > СТО ПАО «Россети» 34.01-23.1-001-2017 «Объем и нормы испытаний электрооборудования».
- «Требования к объему и нормам испытаний электрооборудования»*:
 - указано требование о проведении тепловизионного контроля контактных соединений;
 - приведены методы оценки теплового состояния электрооборудования и токоведущих частей, нормируемые наибольшие допустимые значения температур, требования по периодичности проведения тепловизионного контроля и др.

На энергообъектах предусмотрен обязательный контроль состояния контактов и контактных соединений

^{*} прошедший публичное обсуждение на сайте gov.ru проект требований к обеспечению надежности электроэнергетических систем, надежности и безопасности объектов электроэнергетики и энергопринимающих установок «Требования к объему и нормам испытаний электрооборудования».

ПРИЧИНЫ ВОЗНИКНОВЕНИЯ ДЕФЕКТОВ КОНТАКТОВ И КОНТАКТНЫХ СОЕДИНЕНИЙ

Развитие дефектов контактов и контактных соединений происходит вследствие:


- 1. Повышения переходного контактного сопротивления:
 - уменьшения площади контакта из-за ослабления нажима;
 - возникновения оксидной пленки или нагара под воздействие температуры или разрядов;
 - разъедания или коррозии металла под воздействием кислот, электрохимического окисления и пр.;
- 2. Превышения допустимых нагрузок электрооборудования;
- 3. Избыточного нагрева электрооборудования из-за выхода из строя системы охлаждения или вентиляции*

Основным критерием аварийного дефекта контакта (контактного соединения) является его нагрев выше наибольшей допустимой температуры

^{*}пункт 2.2.8 ПТЭЭП температура воздуха внутри помещений ЗРУ в летнее время должна быть не более 40 °C. пункт 487 ПТЭЭСС температура воздуха внутри помещений ЗРУ в летнее время должна быть не выше 40 °C.

ПЕРЕХОДНОЕ КОНТАКТНОЕ СОПРОТИВЛЕНИЕ

Переходное контактное сопротивление - сопротивление, возникающее в зоне соприкосновения контактных поверхностей, при преодолении током точек касания.

Переходное контактное сопротивление очень чувствительно к окислению поверхности, поскольку окислы металлов являются диэлектриками.

Удельное сопротивление у оксидов на несколько порядков больше, чем у чистых металлов. Для меди при 0°С значение удельного сопротивления 1.62·10⁸ Ом⋅м, а для оксида меди (CuO) составляет 8.2 Ом⋅м.

Нагрев проводника описывается законом Джоуля-Ленца, согласно которому количество теплоты (Q), выделяющееся на контакте зависит от силы тока и сопротивления:

$$Q = I^2 Rt$$

где I – ток (A), R – сопротивление (Ом), t – время (c)

Рост переходного контактного сопротивления имеет нелинейный характер и ускоряется с увеличением температуры

МЕТОДЫ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ КОНТАКТОВ И КОНТАКТНЫХ СОЕДИНЕНИЙ

ПРЯМОЙ

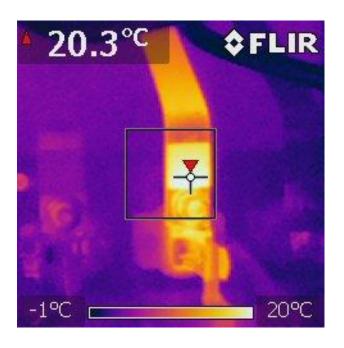
Измерение переходного контактного сопротивления

Преимущественно измеряется на новом оборудовании, до ввода в эксплуатацию

КОСВЕННЫЙ

Измерение температуры

Применяется на оборудовании, которое находится в эксплуатации


С точки зрения работоспособности электрооборудования важно не само переходное сопротивление, а диапазон температур нагрева контактов (контактных соединений) в процессе эксплуатации

МЕТОДЫ ТЕПЛОВОЙ ОЦЕНКИ СОСТОЯНИЯ КОНТАКТОВ И КОНТАКТНЫХ СОЕДИНЕНИЙ

БЕСКОНТАКТНЫЙ

Тепловизионный контроль

КОНТАКТНЫЙ

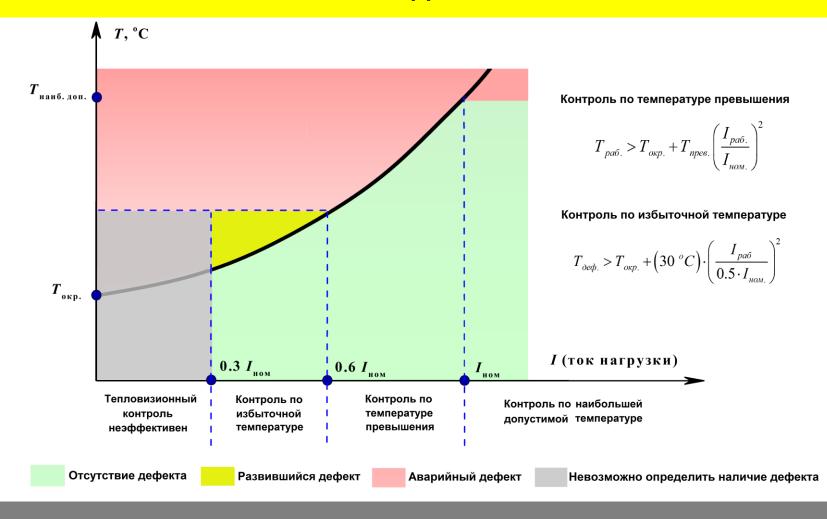
Термоиндикаторный контроль

Тепловизионный и термоиндикаторный контроль позволяют эффективно и своевременно выявлять дефекты контактов и контактных соединений

ЭТАПЫ И ПЕРИОДИЧНОСТЬ ПРОВЕДЕНИЯ ТЕПЛОВИЗИОННОГО КОНТРОЛЯ

РД 34.15-51.300-97 «Объём и нормы испытаний электрооборудования»:

- 1. Измерение температуры диагностируемого элемента.
- 2. Измерение силы тока в цепи для расчета отношения рабочего тока нагрузки к номинальному ($I_{\rm pa6}$ / $I_{\rm ном}$).
- 3. В зависимости от значений тока нагрузки оценка теплового состояния осуществляется расчетным путем по температуре превышения или по избыточной температуре.


ПЕРИОДИЧНОСТЬ:

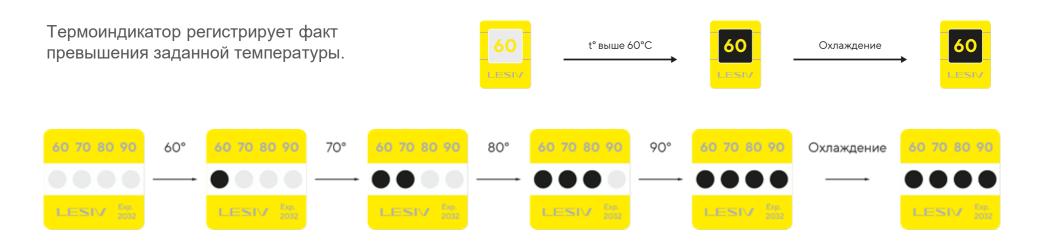
- 1 раз в год проводится тепловизионный контроль электрооборудования на напряжение 330-750 кВ;
- 1 раз в 2 года проводится тепловизионный контроль электрооборудования на напряжение 110-220 кВ;
- 1 раз в 3 года производится проверка электрооборудования на напряжение 35 кВ и ниже.

Проведение тепловизионного контроля электрооборудования и ВЛ при токах нагрузки ниже $0.3 \cdot I_{\text{ном}}$ не способствует выявлению дефекта на ранних стадия

МЕТОДИКИ ТЕПЛОВИЗИОННОГО КОНТРОЛЯ КОНТАКТОВ И КОНТАКТНЫХ СОЕДИНЕНИЙ

Для принятия решения о наличии дефекта при тепловизионном контроле необходимо учитывать ток нагрузки в момент осмотра

ОСОБЕННОСТИ ТЕПЛОВИЗИОННОГО КОНТРОЛЯ



- Оценка теплового состояния по результатам тепловизионного контроля проводится только на момент измерений;
- Выявление дефектов и определение степени их развития производится расчетным путем;
- Не все элементы электрооборудования доступны для осмотра тепловизором;
- Измерения при токах нагрузки 0.3 Іном и ниже не способствуют выявлению дефектов на ранней стадии их развития;
- Установленная периодичность тепловизионного контроля может превышать время развития дефекта от начальной стадии до аварийного состояния

НЕОБРАТИМЫЕ ТЕРМОИНДИКАТОРЫ

Термоиндикаторы — это наклейки, которые необратимо меняют цвет при нагревании до заданной температуры

Термоиндикаторы информируют о фактах превышения заданной температуры в процессе эксплуатации

ТРЕБОВАНИЯ К ТЕРМОИНДИКАТОРАМ

Наименование параметра/характеристики	Требуемое значение	
Тип индикации	Необратимый	
Цветовой переход	Белый–черный	
Требования к термочувствительному элементу	Допустимый диапазон срабатывания установленного порогового значения ± 2 °C	
Пожароустойчивость	ТИН не должны поддерживать горение и должны классифицироваться как трудногорючие вещества в соответствии с ГОСТ 12.1.044-89	
Электрическая прочность (ГОСТ 6433.3-71)	Не менее 15 кВ/мм	
Срок службы	Не менее 10 лет с даты изготовления	

Требования к термоиндикаторам установлены в стандартах следующих организаций:
ПАО «Россети» СТО 34.01-12-002-2022
АО «ОЭК» СТО 76561356-29-004-2022
ПАО «Т-плюс» СТО СО-01-03-02-15

ОЦЕНКА СОСТОЯНИЯ КОНТАКТОВ И КОНТАКТНЫХ СОЕДИНЕНИЙ С ПОМОЩЬЮ ТЕРМОИНДИКАТОРОВ

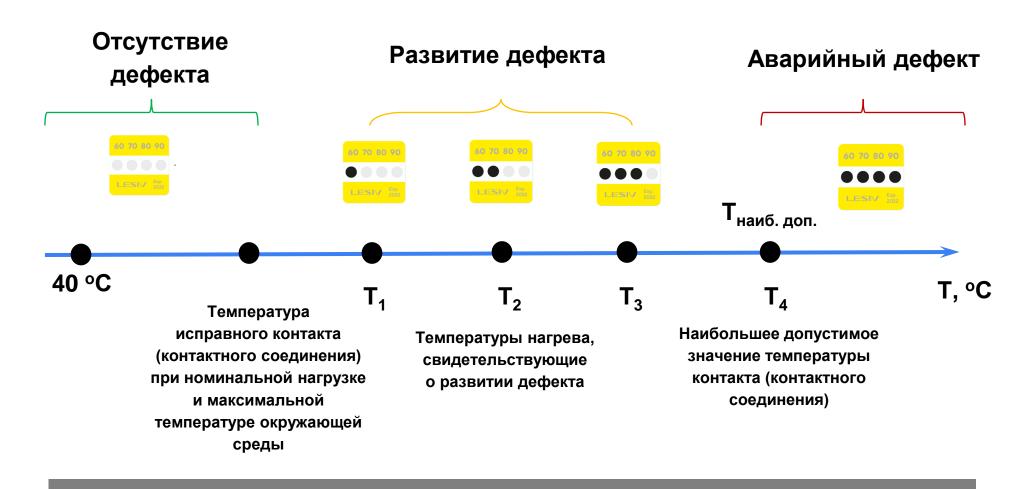
Состояние термоиндикатора	$I_{ m {Makc}}{<}0,5I_{ m {Hom}}$	$I_{\text{макс}} = 0,5-0,75I_{\text{ном}}$	$I_{\text{макс}} = 0,75 - 0,9 I_{\text{ном}}$	$I_{ m\scriptscriptstyle Makc}{>}0,9I_{ m\scriptscriptstyle H0M}$
T ₁ T ₂ T ₃ T ₄	Отсутствие дефекта			
T ₁ T ₂ T ₃ T ₄	Развившийся дефект Начальная степень развития дефекта			
T, T, T, T ₄	Развившийся дефект Начальная степень развития дефекта		пень развития дефекта	
T _j . T ₂ T ₃ T ₄	Развившийся дефект Начальная степень развития дефекта			
T, T ₂ T ₃ T ₄	Аварийный дефект (достижение наибольшей допустимой температуры нагрева)			

• Начальная степень развития дефекта.

Следует держать под контролем и принимать меры по устранению во время проведения технического обслуживания и ремонта.

• Развившийся дефект.

Принять меры по устранению дефекта при ближайшем выводе электрооборудования из работы.


• Аварийный дефект.

Требует немедленного устранения.

Термоиндикаторы позволяют проводить оценку состояния контактов и контактных соединений при осмотрах, техническом обслуживании и ремонтах электроустановок

МЕТОДОЛОГИЯ ТЕРМОИНДИКАТОРНОГО КОНТРОЛЯ КОНТАКТОВ И КОНТАКТНЫХ СОЕДИНЕНИЙ

Для оценки состояния контактов и контактных соединений необходимо использовать 4-х температурные термоиндикаторы

УСТАНОВКА И ОСМОТР ТЕРМОИНДИКАТОРОВ

Термоиндикаторы устанавливаются:

- При монтаже и вводе в эксплуатацию нового оборудования;
- ✓ При выполнении технического обслуживания;
- ✓ При выполнении ремонтных работ;
- ✓ При выполнении плановых или внеплановых работ, с выводом оборудования в ремонт.

Периодичность осмотра термоиндикаторов:

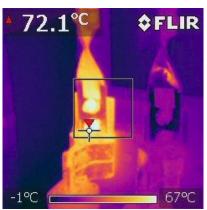
Тип оборудования	Периодичность осмотра оборудования*	Осмотр при техническом обслуживании	Осмотр при проведении ремонтных работ
ПС с дежурным персоналом	Не реже 1 раза в сутки	+	+
ПС без дежурного персонала	Не реже 1 раза в месяц	+	+
ТП, РП	Не реже 1 раза в 6 месяцев	+	+

^{*} п.499 Правил технической эксплуатации электрических станций и сетей Российской Федерации

Периодичность визуального осмотра электрооборудования превышает установленную периодичность тепловизионного контроля

ПРИМЕРЫ ОЦЕНКИ СОСТОЯНИЯ КОНТАКТОВ С ИСПОЛЬЗОВАНИЕМ ТЕПЛОВИЗОРА И ТЕРМОИНДИКАТОРОВ

Фото сработавшег	0
термоиндикатора	ĺ


Фото тепловизионного контроля

Термоиндикаторный контроль

Тепловизионный контроль

Контролируемый элемент -болтовое КС из сплава алюминия и меди

Оценка состояния контактного соединения с помощью термоиндикаторов: 4 точки изменили цвет - аварийный дефект

Температура, зарегистрированная по результатам ТВК: +72.1 °C;

Температура окруж. воздуха в момент осмотра: – 7°C;

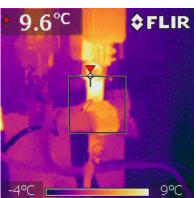
Температура превышения: 79,1°C;

Нормированная температура превышения для болтовых контактных соединений (Al/Cu): 50°C;

Оценка состояния контактного соединения по результатам ТВК: **Аварийный дефект**

ПРИМЕРЫ ОЦЕНКИ СОСТОЯНИЯ КОНТАКТОВ С ИСПОЛЬЗОВАНИЕМ ТЕПЛОВИЗОРА И ТЕРМОИНДИКАТОРОВ

Фото сработавшего
термоиндикатора


Фото тепловизионного контроля

Термоиндикаторный контроль

Тепловизионный контроль

Контролируемый элемент - болтовые контактные соединения из сплава алюминия

Оценка состояния контактного соединения с помощью термоиндикаторов: 4 точки изменили цвет аварийный дефект

Температура, зарегистрированная по результатам ТВК: +9.6°С.

Температура превышения:13,12°C; Нормированная температура превышения: 50°C;

Температура исправного контактного соединения (зеленая фаза), зарегистрированная по результатам ТВК: 0°С;

Ток нагрузки на контактное соединение в момент осмотра: 31 А (0,3 Іном);

Расчетная избыточная температура: 9,6°C;

Избыточная температура приведенная к 0,5

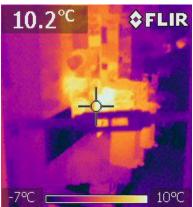
Іном: 26°С;

Оценка состояния КС по результатам ТВК:

Развившийся дефект

ПРИМЕРЫ ОЦЕНКИ СОСТОЯНИЯ КОНТАКТОВ С ИСПОЛЬЗОВАНИЕМ ТЕПЛОВИЗОРА И ТЕРМОИНДИКАТОРОВ

Фото сработавшего
термоиндикатора


Фото тепловизионного контроля

Термоиндикаторный контроль

Тепловизионный контроль

Контролируемый элемент - болтовые контактные соединения из сплава алюминия

Оценка состояния контактного соединения с помощью термоиндикаторов: 4 точки изменили цвет - аварийный дефект

Температура, зарегистрированная по результатам ТВК: +10.2 °C;

Температура исправного контактного соединения, зарегистрированная по результатам ТВК: 0°С;

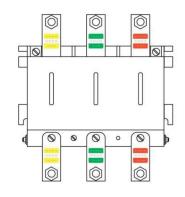
Температура превышения:17.2 °C; Нормированная температура превышения: 50°C;

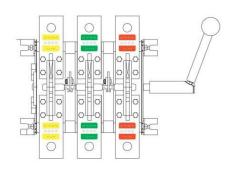
Температура окруж. воздуха в момент осмотра: – 7°C;

Ток нагрузки на КС в момент осмотра: 15 A (0,14 Iном)

Оценка состояния КС по результатам ТВК: **Не может быть выполнена (ток нагрузки менее 0.3** *Іном)*

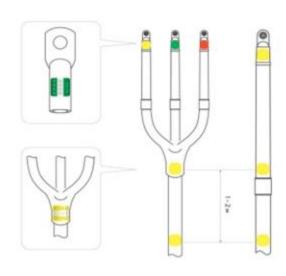

ПРЕИМУЩЕСТВА ТЕРМОИНДИКАТОРОНОГО КОНТРОЛЯ




- Оценка состояния контактов и контактных соединений при визуальном осмотре без использования средств измерения (тепловизора);
- > Оценка состояния контактов и контактных соединений оперативным и ремонтным персоналом при каждом осмотре, техническом обслуживании и ремонте электроустановки;
- > Контроль состояния скрытых элементов электрооборудования;
- > Термоиндикаторы осуществляют непрерывный контроль температуры и необратимо фиксируют факт достижения установленных пороговых значений температуры.

1. Контактные соединения шин и проводов на выводах электротехнических устройств до 1000 В (выключателей, разъединителей, магнитных пускателей, контакторов и пр.)

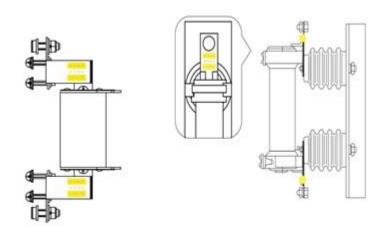
Автомат с кабельным присоединением


Контактор с шинным присоединением

Рубильник с шинным присоединением

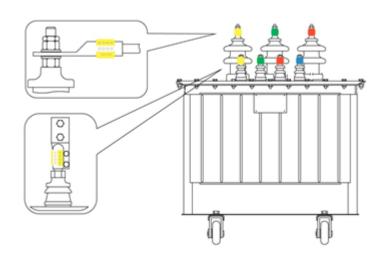
Тип контактного соединения/контакта	Наибольшая допустимая температура, °C	Контролируемые с помощью ТИН температуры, °C
проводники из меди и алюминия без защитных покрытий	95	60-70-80-100
проводники из меди и алюминия с защитными покрытиями	110	60-80-90-110
проводники (провода) с поливинилхлоридной изоляцией	70	50-55-60-70

2. Наконечники и разделки концевых кабельных муфт до и выше 1000 В

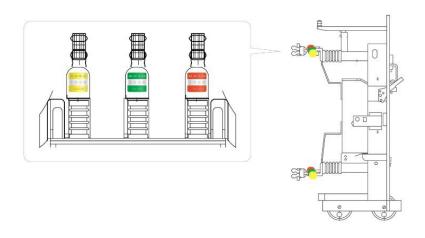


Тип изоляции кабеля	Наибольшая допустимая температура, °C	Контролируемые с помощью ТИН температуры, °С
ПВХ	70	50-55-60-70
из вулканизирующегося (сшитого) полиэтилена	90	60-70-80-90
с пропитанной бумажной изоляцией при номинальном напряжении 6 кВ	65	50-55-60-70

Оценка состояния кабельной муфты производится с использованием коэффициента дефектности

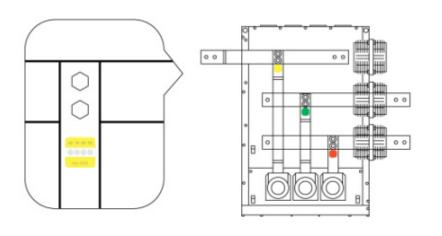

3. Контакты плавких предохранителей до и выше 1000 В

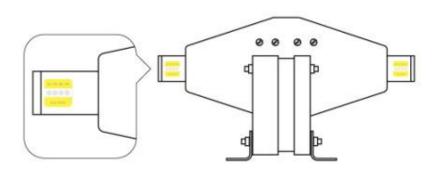
Тип контактного соединения/контакта	Наибольшая допустимая температура, °C	Контролируемые с помощью ТИН температуры, °С
пружинные контакты предохранителей до 1 кВ без оболочки: - медные без покрытия - латунные без покрытия - луженые - никелированные	80 85 95 110	60-70-80-90 60-70-80-90 60-70-80-100 60-80-90-110
пружинные контакты из меди и медных сплавов предохранителей 6 кВ и выше: - без покрытия, - с покрытием серебром или никелем, - с покрытием оловом.	75 105 95	50-60-70-80 60-80-90-110 60-70-80-100


4. Контактные соединения на аппаратных зажимах вводов ВН, СН, НН силовых трансформаторов ЗРУ

Тип контактного соединения/контакта	Наибольшая допустимая температура, °C	Контролируемые с помощью ТИН температуры, °С
аппаратный зажим	105	60-80-90-110
наконечник кабеля с изоляцией из ПВХ	70	50-55-60-70
наконечник кабеля с изоляцией из вулканизирующегося (сшитого) полиэтилена	90	60-70-80-90

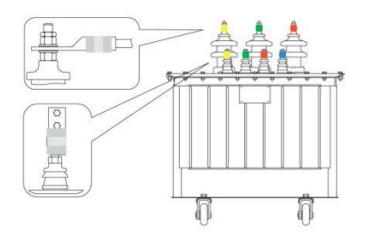
5. Втычные контакты выкатных элементов ячеек КРУ 6-35 кВ (с выключателями, предохранителями, ТН, ТСН, разъединителями)




Тип контактного соединения/контакта	Наибольшая допустимая температура, °C	Контролируемые с помощью ТИН температуры, °С
 – без покрытия в воздухе, – с покрытием серебром или никелем в воздухе, 	75 105	50-60-70-80 60-70-80-100
– с покрытием оловом в воздухе	90	60-70-80-90

Втычные контакты относятся к труднодоступным местам, поэтому оценка контактных соединений проводится с помощью термоиндикаторов по избыточной температуре

6. Разборные контактные соединения сборных и соединительных шин, шин с выводами аппаратов выше 1000 В


Сборные шины

Трансформаторы тока

Тип контактного соединения/контакта	Наибольшая допустимая температура, °C	Контролируемые с помощью ТИН температуры, °С
из меди, алюминия и их сплавов: - без покрытий - с покрытием оловом	90 105	60-70-80-90 60-70-80-100

7. Контактные соединения сборных и соединительных шин, проводов и на аппаратных зажимах электрооборудования ОРУ и ВЛ выше 1000 В

На ВЛ и ОРУ целесообразно использовать однотемпературные термоиндикаторы с пороговыми температурами 60°С или 90 °С в зависимости от условий эксплуатации. Факт срабатывания термоиндикатора в этом случае будет сигналом для внеочередного тепловизионного контроля или проведения ремонтных работ

Выводы силовых трансформаторов

Соединители проводов ВЛ (гильзы)

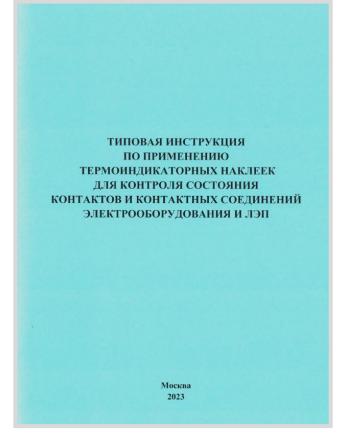
Тип контактного соединения/контакта	Наибольшая допустимая температура, °C	Контролируемые с помощью ТИН температуры, °C
Контактные соединения из меди, алюминия и их сплавов: - без покрытий - с покрытием оловом	90 105	90
Контактные соединения на аппаратных зажимах съемных (разборных) вводов ВН, СН, НН силовых трансформаторов (автотрансформаторов), регулировочных и заземляющих трансформаторов, шунтирующих реакторов; Контактные соединения на аппаратных зажимах съемных линейных вводов	105	90

НОРМАТИВНАЯ БАЗА

РД 34.45-51.300-97 «Объём и нормы испытаний электрооборудования».

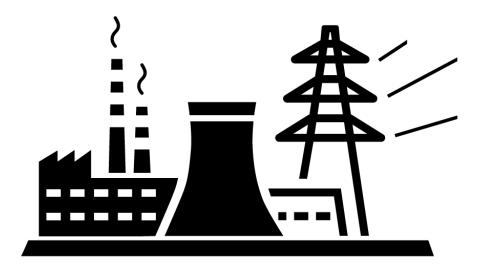
Российское окционерное общество энвритики и электрификоции «ЕЗС России» ОБЪЕМ и НОРМЫ ЭЛЕКТРО-ОБОРУДОВАНИЯ РД 34.45-51.300-97

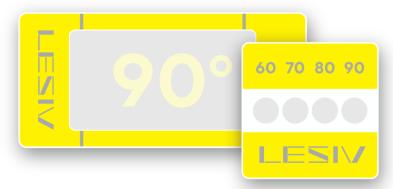
РД 153-34.0.20-363-99 "Основные положения инфракрасной диагностики электрооборудования и ВЛ».



СТАНДАРТЫ ОРГАНИЗАЦИЙ ПО ПРИМЕНЕНИЮ ТЕРМОИНДИКАТОРНОГО КОНТРОЛЯ

Подробнее о термоиндикаторном контроле:




ЗАКЛЮЧЕНИЕ

- > Своевременное обнаружение дефектов контактов и контактных соединений повышает надёжность и безопасность эксплуатации электроустановок, снижает риск возгораний и пожаров.
- ▶ Термоиндикаторы позволяют проводить оценку состояния контактов и контактных соединений электрооборудования в соответствии с методологией РД «Объём и нормы испытаний электрооборудования»
- > Применение термоиндикаторов позволяет своевременно выявлять дефекты контактов и контактных соединений за счёт непрерывного контроля температуры и необратимой регистрации факта превышения пороговых температур.

БЛАГОДАРИМ ЗА ВНИМАНИЕ

OOO «ТермоЭлектрика» www.thermoelectrika.com +7 (499) 130-62-30 info@thermoelectrika.com